Complexity of sequences and dynamical systems

نویسنده

  • Sébastien Ferenczi
چکیده

In recent years, there has been a number of papers about the combinatorial notion of symbolic complexity: this is the function counting the number of factors of length n for a sequence. The complexity is an indication of the degree of randomness of the sequence: a periodic sequence has a bounded complexity, the expansion of a normal number has an exponential complexity. For a given sequence, the complexity function is generally not of easy access, and it is a rich and instructive work to compute it; a survey of this kind of results can be found in [ALL]. We are interested here in further results in the theory of symbolic complexity, somewhat beyond the simple question of computing the complexity of various sequences. These lie mainly in two directions; first, we give a survey of an open question which is still very much in progress, namely: to determine which functions can be the symbolic complexity function of a sequence. Then, we investigate the links between the complexity of a sequence and its associated dynamical system, and insist on the cases where the knowledge of the complexity function allows us to know either the sequence, or at least the system. This leads to another vast open question, the S-adic conjecture, and to a conceptual (though still conjectural) link with the notion of KolmogorovChaitin complexity for infinite sequences (see section 6). Also, these links with dynamical systems have been of considerable help to ergodic theory,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

On the shadowing property of nonautonomous discrete systems

In this paper we study shadowing property for sequences of mappings on compact metric spaces, i.e. nonautonomous discrete dynamical systems. We investigate the relation of  weak contractions with shadowing and h-shadowing property.

متن کامل

DISTURBANCE REJECTION IN NONLINEAR SYSTEMS USING NEURO-FUZZY MODEL

The problem of disturbance rejection in the control of nonlinear systems with additive disturbance generated by some unforced nonlinear systems, was formulated and solved by {itshape Mukhopadhyay} and {itshape Narendra}, they applied the idea of increasing the order of the system, using neural networks the model of multilayer perceptron on several systems of varying complexity, so the objective...

متن کامل

Capturing Outlines of Planar Generic Images by Simultaneous Curve Fitting and Sub-division

In this paper, a new technique has been designed to capture the outline of 2D shapes using cubic B´ezier curves. The proposed technique avoids the traditional method of optimizing the global squared fitting error and emphasizes the local control of data points. A maximum error has been determined to preserve the absolute fitting error less than a criterion and it administers the process of curv...

متن کامل

Singular Perturbation Theory in Output Feedback Control of Pure-Feedback Systems

This paper studies output feedback control of pure-feedback systems with immeasurable states and completely non-affine property. Since availability of all the states is usually impossible in the actual process, we assume that just the system output is measurable and the system states are not available. First, to estimate the immeasurable states a state observer is designed. Relatively fewer res...

متن کامل

On Two-parameter Dynamical Systems and Applications

In this note some useful properties of strongly continuous two-parameter semigroups of operators are studied, an exponential formula for two-parameter semigroups of operators on Banach spaces is obtained and some applied examples of two-parameter dynamical systems are discussed

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 206  شماره 

صفحات  -

تاریخ انتشار 1999